
B-PSE Project Report: Implementation of eID
Protocols - SS23

Tobias Depuydt-Wiedemann1, Yahya El Hadj Ahmed1, Patrick Fender1,
Gisane Gasparyan-Jung1, David Haas1, Yannick Lechler1, Felix Maximilien

Ehondje Ndoumbe1, and Rafael Cabral Vogt1

Darmstadt University of Applied Sciences
{david.c.haas, rafael.vogt, patrick.fender, gisane.gasparyan,

felix.m.ndoumbe, yahya.ahmed, tobias.wiedemann,

yannick.lechler}@stud.h-da.de

1 Introduction

1.1 Project Description

This project aims to implement and evaluate a quantum-resistant version of
the eID (electronic identification) and eMRTD (electronic Machine Readable
Travel Document) security protocols known as PACE (Password Authenticated
Connection Establishment) and EAC (Extended Access Control). The purpose
is to enhance the security of these protocols to withstand potential attacks from
future quantum computers.

Quantum-resistant security protocols primarily rely on post-quantum cryp-
tography (PQC) schemes. These schemes can be integrated into security proto-
cols as replacements for classical schemes, ensuring resistance against attacks by
quantum computers.

The PACE protocol, which is the main focus of this project, currently em-
ploys the Diffie-Hellman (DH) key agreement scheme, based on the hardness of
the discrete logarithm problem. The objective is to incorporate a new type of
scheme called PQC KEM (Key Encapsulation Mechanism) to replace the DH
key agreement. However, this requires modifying the protocol’s design and con-
ducting performance and security testing on the new version.

1.2 Goals

The main goals for this semester’s project were:

– Implementing the PAKEM (Password Authenticated Key Encapsulation Mech-
anism) based on an existing implementation from previous student projects
in this repository.

– Integration of the USART communication library libOpenCM3 for STM32
boards.

– Integration of an optimized implementation of CRYSTALS-Kyber-KEM from
the pqm4 library.

2 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

– Implementation of performance benchmarks to analyze time and memory
usage.

– Optional: Integration of an existing PQC EAC implementation from Mar-
graf, Morgner, Fischlin, or other sources.

– Optional: Integration of SABER-KEM and FrodoKEM as alternative options
to Kyber-KEM.

These additional goals provided opportunities to enhance the functionality and
security of the project. However, the primary focus for this semester was the
implementation of PAKEM as the central encryption mechanism.

2 Preliminaries

At the beginning of the project, we dedicated several weeks to delving into the
theoretical foundations. Our main focus was to familiarize ourselves with various
concepts and terminologies that were relevant to our project. This theoretical
phase was crucial as it provided us with a strong understanding and a solid
foundation for the practical implementation of our project.

2.1 Basic Cryptography

As a starting point, we began by familiarizing ourselves with basic cryptography
concepts. We delved into the fundamentals of symmetric and asymmetric cryp-
tography. Particularly, we emphasized asymmetric cryptography as we intended
to utilize the Key Encapsulation Mechanism (KEM) in our project, which is also
employed in PAKEM.

Additionally, we familiarized ourselves with cryptographic hash functions.
We learned about password-authenticated public-key encryption (PAPKE) and
gained understanding of Ding-PAKE. These concepts were crucial as our objec-
tive was to incorporate them into the implementation of PAKEM. By leveraging
these concepts, we aimed to replace the existing mechanism through the imple-
mentation of PAKEM.

Furthermore, we explored the concepts of chosen-ciphertext attack (CCA)
and chosen-plaintext attack (CPA) security. We also delved into encrypted key
exchange (EKE). These topics deepened our comprehension of secure encryption
methods and provided valuable insights for utilizing and applying PAKEM.

Key Encalpsulation Mechnanism (KEM) A Key Encapsulation Mecha-
nism (KEM) is a cryptographic method used for securely transmitting a session
key between two parties using public key encryption. In traditional public key
encryption (PKE), encrypting longer messages can be tedious, so a KEM is
employed to encrypt the session key with the recipient’s public key. Similar to
PKE, the encrypted session key can be decrypted using the corresponding pri-
vate key. The transmitted session key is then used for symmetric encryption and
decryption of messages exchanged between the parties.

A KEM involves three fundamental algorithms:

B-PSE Project Report: Implementation of eID Protocols - SS23 3

– Key generation algorithm: This algorithm generates a pair of public and
private keys.

– Encryption algorithm: Given a plaintext message and the recipient’s pub-
lic key, this algorithm produces a ciphertext along with the session key.

– Decryption algorithm: This algorithm takes the ciphertext and the recip-
ient’s private key to compute the session key.

Fig. 1. KEM
[cod22]

Due to the limited length of asymmetric keys, a KEM employs an algorithm
to generate a random element in the underlying finite group of the public key
system. The symmetric key is derived by hashing this element, eliminating the
need for padding.

By utilizing a KEM, Alice and Bob can establish a shared session key, which
enables them to securely encrypt outgoing messages and decrypt incoming mes-
sages from each other. This approach combines the advantages of asymmetric
cryptography (such as key distribution) with the efficiency of symmetric encryp-
tion for message transmission.[cod22]

2.2 Post Quantum Cryptography

Post-Quantum Cryptography (PQC) is a branch of cryptography that focuses
on developing cryptographic algorithms designed to resist attacks by quantum
computers. Traditional cryptographic algorithms such as RSA and ECC rely
on mathematical problems like factorization, discrete logarithms, and elliptic
curve discrete logarithms. However, these problems can be efficiently solved by
powerful quantum computers, rendering these algorithms insecure.

To address this challenge, post-quantum algorithms have been proposed as
potential solutions. During our studies, we explored different types of post-
quantum cryptography algorithms, including:

Lattice-based cryptography Lattices have become a crucial component in
modern cryptography due to their resistance against sub-exponential and quan-
tum attacks. These mathematical structures, first studied by mathematicians

4 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

like Lagrange and Gauss, provide a strong periodicity property. In cryptogra-
phy, a lattice is a set of points in n-dimensional Euclidean space, and any element
can be uniquely represented as a linear combination of a basis set of vectors with
integer coefficients. However, in practical cryptographic systems, which require
finite representations such as bit strings, it is necessary to select finite elements
from the infinite lattice structures. This ensures compatibility with cryptographic
operations while leveraging the security properties offered by lattices.[RK19]

– Kyber-KEM: Kyber has been selected by NIST as a post-quantum secure
public key encryption (PKE) and key exchange mechanism (KEM) under
NIST’s post-quantum cryptography (PQC) standardization initiative.
Kyber offers both IND-CPA-secure public key encryption [Kyber CPAPKE]
and IND-CCA2-secure key encapsulation mechanism [Kyber CCAKEM]. Its
security is based on the hardness of solving the learning-with-errors (LWE)
problem in structured lattices.
In the case of IND-CPA-secure Kyber PKE, two communicating parties gen-
erate their own key pairs and exchange their public keys. Using the recipient’s
public key, a fixed-length message (32 bytes) can be encrypted. The cipher-
text can be decrypted using the corresponding secret key (owned privately
by the key owner), allowing the recovery of the 32-byte message.
On the other hand, in the case of IND-CCA2-secure Kyber KEM, two parties
interested in secure communication over a public and insecure channel can
generate a shared secret key of arbitrary byte length. This shared secret key
is derived from a key derivation function (KDF), specifically SHAKE256
XOF in this context. Both parties obtain the same shared secret by seeding
SHAKE256 XOF with a common secret. This secret is 32 bytes long and is
communicated from the sender to the receiver using the underlying Kyber
PKE mechanism[BDK+18b]
However, one disadvantage of Kyber is that its public module ’a’ consists
of k2 polynomials, which is k times larger compared to Ring Learning with
Errors (RLWE) with similar security. Despite this drawback, Kyber remains
a promising choice for post-quantum cryptography due to its robustness
against attacks from powerful quantum computers.

– Saber-KEM:Saber has been selected as a finalist in the NIST PQ standard-
ization project. Its security relies on the difficulty of the Module Learn-
ing with Rounding problem (MLWR). Saber begins with an IND-CPA se-
cure encryption scheme called Saber.PKE, and further presents an IND-
CCA secure key encapsulation mechanism (KEM) known as Saber.KEM.
The Saber.KEM is obtained from Saber.PKE through a version of the FO
transform.[NDGJ21]

– Frodo-KEM: Frodo is a post-quantum cryptography scheme based on the
Learning with Errors (LWE) problem. The elements of martix are sampled
from a discrete Gaussian distribution. Frodo-KEM utilizes different parame-
ter sets for different security levels: (640, 215, 12, 2.8), (976, 216, 10, 2.3), and
(1344, 216, 6, 1.4) for Frodo-640, Frodo-976, and Frodo-1344 respectively.
The three main algorithms that constitute Frodo-KEM are key generation
(KeyGen), encapsulation (Encaps), and decapsulation (Decaps).[LBB22]

B-PSE Project Report: Implementation of eID Protocols - SS23 5

Multivariate cryptography: This type of cryptography involves using
multivariate polynomial equations to provide security against quantum attacks.
Multivariate cryptographic algorithms offer resistance to quantum attacks due
to the computational hardness of solving systems of multivariate equations.

Hash-based cryptography: In 1979, Ralph Merkle introduced the first
hash-based digital signature scheme, which relies on the security of one-way
hash functions. Despite the limitation of producing a fixed number of signatures
at once, these schemes offer long-term security against known quantum computer
algorithms. In 1990, Merkle developed the Merkle signature scheme, which en-
ables the conversion of a one-time signature into a multi-time signature by utiliz-
ing the Lamport-Diffie one-time signature as a foundational component.[RK19]

Supersingular elliptic curve isogeny cryptography: This cryptographic
approach is based on isogenies, which are mappings between elliptic curves.
Supersingular elliptic curve isogeny cryptography offers a different mathematical
foundation for providing post-quantum security.

Code-based cryptography: This type of cryptography relies on error-
correcting codes to provide security against quantum attacks. Code-based cryp-
tographic algorithms are based on the hardness of decoding certain linear codes.

For our project, it was particularly important to understand lattice-based
cryptography, as we integrated the optimized CRYSTALS-KYBER algorithm.
Kyber is a post-quantum Key Encapsulation Mechanism (KEM) that builds
upon the Learning with Errors (LWE) problem. It utilizes a ring structure that
is similar to the one used in the NewHope algorithm.

6 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

2.3 PAKEM(Password Authenticated Key Encapsulation
Mechanism)

Pakem is a cryptographic mechanism that enables secure data exchange between
two instances, namely the client and the server. Both the client and the server
apply the selected key derivation function to the password, with the client also
generating a key pair using the specified KEM. The client then constructs its
authenticated public key by encrypting the public key with the shared derived
encryption key and sends it to the server, where it is decrypted using the server-
side shared derived encryption key.

Figure 2 shows the protocol diagram for PAKEM.

Alice Bob

Password π Password π′

Kπ = KDF(π) Kπ′ = KDF(π′)

ska, pka
$←− KeyGen

apka
$←− CKπ (pk)

apka−−−−→
pk′

a = C−1
Kπ′ (apka)

(cb,K) = Encap(pk′
a)

cb←−
K

∗
= Decap(ska, cb)

K = KDF(K∗
) K = KDF(K)

Fig. 2. PAKEM

3 Implementation

3.1 Implementation of PAKEM

New Code structure Starting out the project, it soon became clear that we
would have to come up with a new program infrastructure. The old implementa-
tion was entirely based on Kyber [BDK+18a] and was therefore not designed to
be modular or flexible in any way. That is why a lot of time went into finding a
new structure that would achieve these goals, with the bonus tasks of improving
memory efficiency and usability in general in the back of our heads.

B-PSE Project Report: Implementation of eID Protocols - SS23 7

Fig. 3. Program Architecture

8 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

At the very heart of our code sits the PAKEM-Core, an abstraction layer
that provides an interface, that can be assigned concrete functions dynamically.
While we were initially only planning to assign the key encapsulation mecha-
nism dynamically, the security levels of the AES encryption and hash-based key
derivation can now also be asserted. Since Kyber, SABER [DKRV18] and Frodo
[BCD+16] all come with 3 different security levels themselves, our program al-
lows to specify which level is to be used.

In order to make the PAKEM implementation as user friendly as possible, we
decided early on to work with preprocessor variables as much as possible. In the
current state of the implementation, a user does not have to interact with the
code itself in order to run the PAKEM protocol. Additionally we have adapted
the message, that initiates the protocol. Instead of a random payload, the client
sends the server an unsigned integer. This integer contains the used KEM as well
as the security level, as well as the security level of the AES-encryption and the
hashing. We achieve this by using a simple binary encoding, the server decodes
the message upon receiving and includes the necessary static libraries to match
the client.

Another important point we tackled was the memory-efficiency of the project.
The old implementation contained a large amount of redundant memory struc-
tures and memory leaks. Therefore, we have reworked the way that keys are
stored over the course of the protocol and implemented a singular structure,
that contains all the keys, as well as methods for appropriate memory man-
agement. To test our work, we used Valgrind as a tool to benchmark memory
efficiency and to iron out any remaining memory leaks.

Integrating the different KEMs Each KEM requires specific compiler flags
for optimal execution, and they often operate at different security levels. By en-
capsulating these complexities in static libraries, multiple benefits are achieved:

– Flag Management: KEMs requires special compiler flags to ensure the op-
timal execution of the core cryptographic operations. Using static libraries
we eliminated the need to manage the complex flags in the main codebase,
resulting in cleaner and more comprehensible compilation process.

– Modularity and Maintainability: static libraries encapsulates the algorithm-
specific optimizations in isolated units. This modularity simplifies mainte-
nance, future enhancements to the project and promotes code stability.

– Code Duplication: As different KEMs may demand separate source code
to meet their unique security requirements, code duplication wouldn’t be
avoided. By encapsulating the algorithm-specific code optimizations and se-
curity parameters within static libraries, we eliminate the need to duplicate
source code for each security level. This reduction in code duplication sim-
plifies the project structure, leading to a more manageable and maintainable
codebase.

The static libraries were created within separate Docker containers and subse-
quently integrated into the application within the virtual environment. However,

B-PSE Project Report: Implementation of eID Protocols - SS23 9

for the hardware environment, we currently use the source code of the algorithms
to guarantee a more effective debugging.

The integration of SABER was omitted due to its dependency on OpenSSL.
The complexity of compiling OpenSSL for ARM and the probably not successful
integration given the limited hardware resources deemed the approach to be im-
practical. This led to the decision of not including SABER in the implementation
to ensure project deadlines are met.

Similarly, the integration of FRODO posed a challenge as it requires an op-
erating system environment (Unix, Windows), which is absent on the hardware.
In the last week we found an ARM-compiled version of FRODO. However, we
made the decision to not integrate it due to time constraints.

Initialising the communication As mentioned above, everything starts with
the customer. To initiate communication, the client selects its operating mode
using the Acknowledgement Message, in which it encodes the security level of the
selected kem, AES (Advanced Encryption Standard) and shake in an unsigned
integer with binary correspondence. The server will then receive this information
via the coded message and will check whether it has the necessary libraries before
being able to place its PAKEM-core function pointers accordingly.

1 void sendClientPakemSetup(struct CLIENT_ACK_MESSAGE

clientAckMessage) {

2 struct ByteArray ackMessageEncoded = encode(

clientAckMessage);

3 sendData(clientSocket , ackMessageEncoded);

4 struct ByteArray ackMessage = receiveData(clientSocket);

5 printf("%s\n", ackMessage.data);

6 free((void *) ackMessage.data);

7 }

Listing 1.1. initialising communication from the client-side

Initialising the communication As mentioned above, everything starts with
the customer. To initiate communication, the client selects its operating mode
using the Acknowledgement Message, in which it encodes the security level of
the selected KEM, AES (Advanced Encryption Standard) and SHAKE in an
unsigned integer with binary correspondence. The server will then receive this
information via the coded message and will check whether it has the necessary
libraries before being able to place its PAKEM-core function pointers accord-
ingly.

1 void sendClientPakemSetup(struct CLIENT_ACK_MESSAGE

clientAckMessage) {

2 struct ByteArray ackMessageEncoded = encode(

clientAckMessage);

3 sendData(clientSocket , ackMessageEncoded);

4 struct ByteArray ackMessage = receiveData(clientSocket);

10 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

5 printf("%s\n", ackMessage.data);

6 free((void *) ackMessage.data);

7 }

Listing 1.2. initialising communication from the client-side

1 struct PAKEM_UNIT * checkClientPakemSupported(struct

CLIENT_ACK_MESSAGE clientAckMessage , struct PAKEM_UNIT **

pakemsArr) {

2 struct PAKEM_UNIT *pakemUnit = pakemsArr[

getPakemSecLevelIndex(clientAckMessage.kem ,

clientAckMessage.level)];

3 bool notSupported = (pakemUnit == NULL);

4 if (notSupported) {

5 fprintf(stderr , "Unsupported Pakem KEM:%d, SEC_LEVEL

:%d. exit", clientAckMessage.kem , clientAckMessage.level)

;

6 }

7 char *unsupportedPakem = (notSupported) ? "UNSUPPORTED

PAKEM \0" : "OK\0";

8 struct ByteArray ackMessageServer = {(uchar *)

unsupportedPakem , strlen(unsupportedPakem)};

9 sendData(serverSocket , ackMessageServer);

10 if (notSupported) exit(-1);

11 return pakemUnit;

12 }

Listing 1.3. setting PAKEM UNIT pointer according to PAKEM supported by the
client

Key exchange The following step then consists in both client and server de-
riving a shared password from an identical pin they both know initially - if they
are not corrupted. For this end, both client and server make use of the SHAKE
KDF (key derivation function) and store the resulting password using a struct

Key pointer.
The client continues by generating a key pair (one private and one public key).
To perform this, it uses a key generation function that is derived from the infor-
mation on the supported PAKEM. The public key is then encrypted using AES
in CBC mode with the shared derived password. The AES security level (128 or
256 bit) is chosen according to the supported PAKEM.

1 void generateKeyPair(KeyGenFunc keyGenFunction , struct

ByteArray *publicKey , struct ByteArray *privateKey) {

2 allocate2Data(privateKey , publicKey);

3 keyGenFunction(publicKey ->data , privateKey ->data);

4 }

Listing 1.4. client generating a key pair using a configurable key generation function

B-PSE Project Report: Implementation of eID Protocols - SS23 11

Authentication and encapsulation Once the server receives the client’s en-
crypted public key, it decrypts it using a decryption function that is chosen
according to the information on the supported PAKEM received in the Acknowl-
edgement Message. The shared password serves as key for the AES decryption.
Decryption success is thus dependent on both the client’s and the server’s knowl-
edge of the correct initial pin and can thus be viewed as a means of authentica-
tion.
The server then proceeds to encapsulate the key, using the encapsulation func-
tion that corresponds to the chosen PAKEM and the previously decrypted public
key received from the client. As results, the encapsulation yields both a cipher-
text and a shared secret. Both are stored using the struct Key pointer. The
server then sends the ciphertext to the client.

1 void sendEncapsulateSecret(struct ByteArray *cipherServer ,

struct ByteArray *sharedSecret ,

2 struct ByteArray *publicKeyClient ,

EncapFunc encapFunction) {

3 allocate2Data(cipherServer , sharedSecret);

4 encapFunction(cipherServer ->data , sharedSecret ->data ,

publicKeyClient ->data);

5 sendData(serverSocket , *cipherServer);

6 printf("Cipher :\n");

7 printHex(cipherServer ->data , cipherServer ->length);

8 printf("\n");

9 deallocate2Data(cipherServer , publicKeyClient);

10 }

Listing 1.5. server encapsulating the client’s public key and sending the resulting
ciphertext to the client

Decapsulation and derivation of a symmetric key When the client receives
the ciphertext the server just sent to it, it goes on by decapsulating the shared
secret using the client’s private key as well as a decapsulation function that is
set according to the supported PAKEM. The shared secret is stored using the
struct Key pointer.
Now that both server and client have the shared secret, they both derive a session
key stored using the same key pointer and the SHAKE KDF. This session key
serves as a symmetric key which allows client and server to entertain an AES
encrypted communication.

1 void receiveDecapsulateSecret(struct ByteArray *cipherServer ,

2 struct ByteArray *sharedSecret ,

3 struct ByteArray *privateKeyClient ,

4 DecapFunc decapFunction) {

5 allocate2Data(sharedSecret , cipherServer);

6 struct ByteArray received_cipher = receiveData(

clientSocket);

7 memcpy(cipherServer ->data , received_cipher.data ,

received_cipher.length);

12 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

8 deallocate1Data (& received_cipher);

9 decapFunction(sharedSecret ->data , cipherServer ->data ,

privateKeyClient ->data);

10 deallocate2Data(cipherServer , privateKeyClient);

11 }

Listing 1.6. client decapsulating the ciperhtext sent to it by the server

Demonstration Our code includes a demonstration of the PAKEM implemen-
tation in a virtual environment which serves to give an immediate feedback on
whether the code works as it should. Both client and server call a function demon-

strateItWorked which emulates a complete communication between each other
where the outcome of every step is printed in the terminal so that programmers
can check the code’s functionality.

1 void demonstrateItWorked(EncryptFunction encryptFunction ,

DecryptFunction decryptFunction ,

2 struct ByteArray *sessionKey) {

3 char *message = "Hello Bob , my name is Alice and I study

Computer Science at the Hochschule Darmstadt \0";

4 struct ByteArray message_byte = {.data = (uchar *)

message , .length = strlen(message)};

5 const struct ByteArray *encrypted_msg_data =

encryptFunction(sessionKey , &message_byte);

6 sendData(clientSocket , *encrypted_msg_data);

7 freePaddingResult(encrypted_msg_data);

8 struct ByteArray encMessage = receiveData(clientSocket);

9 struct ByteArray *receivedMessage = decryptFunction(

sessionKey , &encMessage);

10 printf("\n");

11 printf("%s", receivedMessage ->data);

12 printf("\n");

13 freeUnPaddingResult(receivedMessage);

14 free((void *) encMessage.data);

15 }

Listing 1.7. demonstration of the code’s functionality from the cleint side

3.2 Integration of the USART communication library libOpenCM3
for STM32 boards

Objective: Our goal for this project was to integrate the communication with li-
bOpenCM3 [lib] while preserving the STM32 HAL (Hardware Abstraction Layer)
for other setups, including GPIO (General-Purpose Input/Output) and Clocks.

Progress and Challenges: We successfully managed to link and compile with
libOpenCM3, demonstrating the interoperability of these two frameworks at a

B-PSE Project Report: Implementation of eID Protocols - SS23 13

basic level. In this stage we were able to send messages to the server applica-
tion. Within this process we faced problems with the communication protocol
of the server, the integrated development environment as also with initializing
the hardware. To look at the those problems separately we decided to start de-
veloping basic programs from scratch and as the progress continues to integrate
the new functionalities step by step. With time as our most shrinking resource
we were unable to establish a fully functional USART communication.
First approach: Our first approach was to identify every aspect of the HAL
code and to tried to free the existing code base of it. Therefore we documented
the functionality and appearance of the existing HAL code. We came to the
conclusion that this approach would be too time consuming and the existing
interaction with the HAL library was integrated to deep into the existing pro-
gram.
Second approach: To get a better understanding of how the libOpenCM3
works we started developing a hello world program where we tried so send a
’Hello world’ string to the server. To analyze the communication traffic we used
a program called hterm [hte] which made it possible to see what the server
obtains. Here we encountered the first bigger problem. Instead of the server re-
ceiving the right message it interpreted the message as random bits and not the
’Hello world’ string we tried to send. We suspected that the initial setup of the
clock, USART and GPIO were the root cause of the problem.
Third approach: Due to our missing understanding of the possible interference
of the setup with the communication we chose to orient on an existing approach
from a former developer. We modified the code and made it work for our pur-
poses. As this was done we went back to our former approach and used the
new code base to implement the functionalities we need step by step. We were
now still not able to send a string to the server and get it interpreted right. As
we continued to work on the receiving function we also failed on this task. The
main problem in this case was that debugging the interrupt service routine led
to break the debugging process. With this issue and our restricted knowledge we
were not able to further investigate on the problems. So we decided to document
our steps and ask for support from more experienced developers in this field.
The response time exceeded our available time.

Future Steps: A deeper investigation is required to fully understand and re-
solve the observed issues. These investigations should focus on how the two
frameworks, libOpenCM3 and STM32 HAL, interact and potentially conflict,
especially with respect to USART communication and interrupt handling. Fur-
thermore, exploring more robust and effective debugging tools might aid in dis-
secting the complications inherent in our current setup. Also a documentation
of the existing communication protocols should be created.

14 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

3.3 Evaluation of Implementations

Tested System Configurations The memory and speed benchmarking has
been performed on the following system configurations:

(1) Modified Kyber-Ding-PACE (branch feature/pace-benchmarks-memory,
commit be8cb857): This is the project configuration from before we started
work in SS23 (Apr 2023)

(2) PAKEM with pqm4 speed Kyber Level 2, first working version
(branch feature/pakem-benchmarks-memory, commit 9ff466f4): Our im-
plementation of the PAKEM protocol with the pqm4 speed implementation
of Kyber Level 2 (kyber512) as well as 128bit-AES and 256bit-shake. In
this configuration, the memory allocation was not optimal. Deallocation was
missing in many places. For the following configurations we improved the
memory usage.

(3) PAKEM with pqm4 speed Kyber Level 2 (branch feature/pakem-

benchmarks-memory, commit 9ff466f4): This configuration implements the
PAKEM protocol with the pqm4 speed implementation of Kyber Level 2
(kyber512) as well as 128bit-AES and 256bit-shake.

(4) PAKEM with pqm4 speed Kyber Level 3 (branch feature/pakem-

benchmarks-memory, commit 9ff466f4): This configuration implements the
PAKEM protocol with the pqm4 speed implementation of Kyber Level 3
(kyber786) as well as 128bit-AES and 256bit-shake.

(5) PAKEM with pqm4 speed Kyber Level 4 (branch feature/pakem-

benchmarks-memory, commit 9ff466f4): This configuration implements the
PAKEM protocol with the pqm4 speed implementation of Kyber Level 4
(kyber1024) as well as 128bit-AES and 256bit-shake.

The following sections focus on the differences between the final PAKEM and
Modified Kyber-Ding-PACE implementations. The full results and discussion,
including the unoptimized Kyber (configuration 2), can be found in the wiki of
the GitLab project.

Memory Benchmarking Implementation Since no tool was found in our
research that could provide the benchmarking functionality on the board, we
opted to implement our own solution. The memory benchmarking implementa-
tion includes several components and functionalities:

(1) Memory Tracking Functions: The implementation includes wrapper func-
tions for malloc, free, and calloc, which intercept standard memory al-
location and deallocation calls to track and measure heap memory usage.
These functions update memory usage metrics such as current heap usage,
total heap usage, and peak heap usage. The malloc and calloc wrappers
reserve more memory than initially requested to store the size information
as well, but only track the initially requested amount of memory as to not
alter the benchmark. The reason for this is that the free wrapper is pro-
vided the information of how much memory was freed and can keep track of
this correctly.

B-PSE Project Report: Implementation of eID Protocols - SS23 15

(2) Memory Usage Tracking: The implementation maintains a MemoryUsage
struct to track memory usage. This struct holds metrics such as total mem-
ory, current memory, global peak memory, and peak memory for specific
subroutines.

(3) Memory Benchmarking Functions: The implementation provides func-
tions for benchmarking memory usage:
– transmitMemoryProfile: This function transmits memory profile infor-

mation to the server. It formats memory usage metrics, including total
memory, peak memory, and memory deltas, into a message buffer and
sends it to the server.

– reset peak memory usage: Used before measuring a subroutine to reset
the ’local’ peak (the global peak remains unchanged).

– get peak memory usage: Used after measuring a subroutine to get the
peak since the last reset.

Memory Metrics The memory benchmarking implementation includes several
metrics to capture different aspects of memory usage. These metrics are stored
in the MemoryUsage struct and provide insights into memory allocation patterns:

total (bytes) Total heap memory allocated throughout the program.
global peak (bytes) Highest heap memory used at any point.
beforeProtocol, afterProtocol (bytes) Memory usage before and after the

protocol execution, respectively.
keygen peak, keygen delta (bytes) Peak and change in memory during key

generation.
apkEncrypt peak, apkEncrypt delta (bytes) Metrics related to AES encryp-

tion.
decap peak, decap delta (bytes) Peak and change in memory during decap-

sulation.

Additional Measurements and Analysis In addition to memory bench-
marking, the following measurements and analysis have been performed:

– RAM and FLASH Usage: The CubeIDE Build Analyzer has been used
to obtain information about RAM and FLASH usage. This helps in under-
standing the program’s memory footprint.
FLASH = code (text) + initialized global variables (copied from FLASH
to RAM during startup).
RAM = initialized + uninitialized global variables.

– Speed Benchmarking: Every function has been tested for speed bench-
marking. A timer class was inserted in the STM32-Client Project. The code
for the speed benchmarking can be found in the branch feature/pakem-
benchmarkings-time/Sources/stm32 client. The timer commands used in the
project are as follows:
• INIT TIMER: Initiate the timer protocol

16 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

• RESET TIMER: Reset the timer to 0.
• START TIMER: Timer start.
• STOP TIMER: Stop the timer.
• GET RESULT MS: Convert the result in Milliseconds
• CONCLUDE TIMING: Stops the running timer and resets it

Steps for Reproducing Memory Benchmark Results To reproduce the
benchmarking results, follow these steps:

1. Clone the repository and checkout the specific commit used as the basis for
benchmarking the specific configuration (see configurations above).

2. Since CubeIDE doesn’t behave well when importing projects, you need to
create a new STM32 project (any name), then replace all the files with the
files from the correct folder in the repo, and finally rename the .ioc file to
the name you gave your new STM32 project. The correct folders to copy
into the CubeIDE project are:
(a) for Modified Kyber-Ding-PACE: import Sources/PACE-client-mem-benchmark
(b) for PAKEM with pqm4 speed Kyber Level 2, unoptimized first working

version: import Sources/PAKEM-client-unoptimized-lvl2-memory-benchmark

(c) for the other PAKEM configurations: import the Sources/PAKEM-client-
lvlX-memory-benchmark folder with the specific Kyber security level

3. For PAKEM: add preprocessor flags. These should already be imported cor-
rectly. If not, add USE KEM=KYBER, choose KYBER K=?, KYBER ?=1 and SEC -

LEVEL=? according the the Kyber security level, and choose AES LEVEL=?

and SHAKE LEVEL=? as desired.
4. Add benchmarking linker flags. These should already be imported correctly.

If not, add these to ’Other Linker flags’: -Wl,-wrap,malloc -Wl,-wrap,free

-Wl,-wrap,calloc

5. Connect the board and run the project using CubeIDE.
6. Build and start the server.

(a) For PAKEM:
– Make sure to build for the Kyber level the client uses, or all versions

by specifying cmake -DKYBER=234 -DVIRTUAL=0 .

– Run make

– Run the server: sudo ./server /dev/ttyUSB0

(b) For PACE:
– Use CLion to edit the Run Configuration (Run with argument /de-

v/ttyUSB0 and root privileges)
7. Press the reset button (black button) on the board, the server should start

printing output to the console
8. Find the measured memory usage in the server console output as well as in

the file written to cmake-build-debug/Sources/virtual-environment/server/memory -

benchmarks.txt

9. Analyze the generated .elf file size (in the Debug folder of the CubeIDE
project), RAM and FLASH usage, and stack usage using the provided tools
(i.e. CubeIDE Build Analyzer and Static Stack Analyzer).

B-PSE Project Report: Implementation of eID Protocols - SS23 17

Results Tables 1 and 2 show the results measured in our benchmarks for mem-
ory and speed, respectively.

Discussion of Results for Memory Measurement

1. Static Memory: All tested PAKEM configurations use about 0.6% of the
640KB RAM and 4.5-4.6% of the 2MB FLASH on startup, which is less
RAM usage but more FLASH usage compared to the original ”modified
Kyber-Ding-PACE”. This suggests that we are using a larger codebase for
the PAKEM implementation, but less global variables.

2. Peak Memory Usage: The PAKEM implementations demonstrate signif-
icant memory usage reduction compared to the previous ”modified Kyber-
Ding-PACE.” At the lowest security level (PAKEM with Kyber Level 2),
the peak memory usage (global peak) is approximately 11% of the previ-
ous, while at the highest security level (PAKEM with Kyber Level 4), it is
about 28% of the previous. This indicates a substantial reduction in memory
consumption across the PAKEM implementations compared to the previous
work.

3. Differences Between Kyber Versions: The memory usage trend ob-
served across the PAKEM implementations is consistent with the inherent
trade-offs in cryptography. As one opts for stronger security levels with larger
key sizes or cryptographic parameters, one should expect increased compu-
tational and memory requirements. The labels (Kyber512, Kyber768, and
Kyber1024) refer to different parameter sets of the Kyber post-quantum key
encapsulation mechanism. With larger keys or parameters, cryptographic
operations such as key generation, encryption, and decryption can involve
more complex mathematical operations or iterations, thus consuming more
memory.

4. Memory Deallocation After Protocol: The PAKEM implementations
exhibit efficient memory deallocation after establishing the secure connec-
tion. The allocated memory after connection establishment represents only
a fraction of the peak memory usage, amounting to 52%, 58%, and 63% for
the three security levels, respectively (given by: afterProtocol / global peak).
Compared to the original ”modified Kyber-Ding-PACE,” which did not free
any memory after connection establishment, the memory optimization in
PAKEM implementations is evident.

5. Memory Usage in Subroutines: The memory requirements of the mea-
sured subroutines vary across the different implementations and security lev-
els. Regarding the differences between delta and peak values, in our PAKEM
implementations the delta of each subroutine is always slightly below the cor-
responding peak, indicating small memory deallocations during each subrou-
tine. The ”decap delta” for PAKEM is negative in all three configurations,
suggesting a release or reduction of memory during decapsulation - more
than what was allocated for decapsulation itself. The decap routine in PACE
shows no memory usage at all, potentially because the subroutiens itself does
not allocate or free any memory, and so does the function call is makes to

18 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

Previous Work Our Work

Kyber-Ding- PAKEM PAKEM PAKEM
PACE Kyber512 Kyber768 Kyber1024

RAM and FLASH
RAM used (kB) 4.2 3.6 3.6 3.6

FLASH used (kB) 61.3 91.6 91.9 93.5

Heap

total usage (kB) 48.4 8.8 13.8 19.9
global peak (kB) 47.3 5.4 8.9 13.3

before protocol (kB) 0.1 0.2 0.2 0.2
after protocol (kB) 47.3 2.8 5.2 8.4
keygen peak (kB) 5.9 3.4 5.6 8.1
keygen delta (kB) 5.9 3.2 5.4 7.9

apk encrypt peak (kB) 2.3 1.8 2.5 3.4
apk encypt delta (kB) 2.3 1.0 1.3 1.8

decap peak (kB) 0 1.0 2.0 3.4
decap delta (kB) 0 -1.6 -1.7 -1.5

Table 1. Memory Benchmarks

Previous Work Our Work

Kyber-Ding- PAKEM PAKEM PAKEM
PACE Kyber512 Kyber768 Kyber1024

Function Calls

sendClientPakemSetup (ms) 504 502 502 502
generateKeyPair (ms) 67 32 52 82

sendClientPublicKey (ms) 501 518 525 533
receiveDecapsulatedSecret (ms) 86 34 56 337

deriveSessionKey (ms) 45 1 1 1
total time (ms) 3669 1095 1146 1469

Table 2. Speed Benchmarks

B-PSE Project Report: Implementation of eID Protocols - SS23 19

the KEM. The structs for storing the ciphertext, keys and decrypted data
have already had memory allocated before this subroutine. This shows a po-
tential flaw in the way memory is measured in our benchmarks: all of the
memory a particular subroutine needs is not necessarily allocated inside that
subroutine. This can lead to inaccuracies when analysing the memory needs
of different subroutines.

Discussion of Results for Speed Measurement

1. Comparision with the Kyber-DING-PACE Implementation: The
PAKEM protocol stands out from the KYBER-DING protocol for several
reasons that contribute to a generally faster implementation. One significant
reason for this is the efficiency of the hashing process. In the KYBER-DING
protocol, hashing requires more time compared to PAKEM. This is because
KYBER-DING employs a more complex hashing procedure that demands
more computational power, potentially slowing down the entire encryption
process. Another crucial factor is Memory Allocation, the management of
memory during implementation. PAKEM utilizes optimized memory allo-
cation, allowing for more efficient memory deallocation. In contrast, the
memory allocation in the KYBER-DING protocol might be less optimized,
leading to fragmentation and inefficient memory usage. The efficient use of
memory by the PAKEM Protocol contributes to speeding up the overall pro-
cess, as less time is spent managing memory resources.
Another reason for the shorter time in the PAKEM protocol is that some
methods are used multiple times in the Kyber-Ding PACE protocol. There-
fore, for example, the generateKeyPair and the decap method is almost
exactly half the time compared to the Kyber-DING-PACE protocol. The
same thig goes to the deriveSessionKey method.

2. Usage of AES and SHAKE: In the implementation of PAKEM, a no-
table feature is the ability to apply distinct security levels to various func-
tions within the protocol. SHAKE has been employed for the decapsulation
process, while AES serves for key generation. Within SHAKE and AES,
one has the flexibility to individually select the desired version, whether it’s
AES-128 or AES-256, and similarly, SHAKE offers the choice of SHAKE-128
or SHAKE-256. Opting for the 256-bit versions results in longer encryption
times compared to the 128-bit variants, which can be seen in the Speed
Benchmark tests above. In the benchmark tests conducted, which are illus-
trated in a graph, AES-128 and SHAKE-128 were utilized. However, the
selection of these specific versions is entirely customizable based on require-
ments and preferences.

3. Kyber512, Kyber768 und Kyber1024 The implementation provides the
flexibility to choose from various security levels within the Kyber protocol
as well. These security levels include Kyber512, Kyber768, and Kyber1024.
Depending on the specific security level chosen, the corresponding encryption
process will require varying amounts of time. It’s important to note that
the selection of a higher security level, such as Kyber1024, would naturally

20 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

demand more computational resources and consequently result in longer
encryption times. This adaptive approach allows users to tailor their security
requirements to the application’s needs while being aware of the trade-offs
in terms of processing time and computational overhead.

4. Decapsulation peak from kyber768 to kyber1024: A noticable peak
can be seen in the receiveDecapsulatedSecret method from Kyber768 to
Kyber1024 from 56ms to 337ms. This peak could be attributed to several fac-
tors: (1) Resource Consumption: The use of SHAKE, an extended SHA-3
algorithm, for decapsulation in Kyber1024 can demand higher resource uti-
lization. The increased complexity of this algorithm can contribute to longer
processing times. (2) Memory Requirements: The larger key size and
increased complexity in Kyber1024 can lead to higher memory demands,
affecting execution time, especially if memory accesses need optimization.
(3) Implementation Optimization: It’s possible that the decapsulation
method for Kyber768 was better optimized than for Kyber1024. A less op-
timized implementation can result in longer execution times.

B-PSE Project Report: Implementation of eID Protocols - SS23 21

4 Conclusion

4.1 Review

The team set out with a challenging yet imperative goal in mind - integrating
post-quantum cryptography (PQC) into existing eID and eMRTD security pro-
tocols to counter potential threats from quantum computers. Through the course
of this project:

– The PAKEM (Password Authenticated Key Encapsulation Mechanism) was
successfully implemented on the foundation of previous student projects, us-
ing a modular framework for more flexibility and expandability. Notably,
the introduction of an ACK-message is a pivotal development that commu-
nicates both the KEM and the security levels in use and enables a single
eID terminal (server) to communicate with different security configurations
across different cards (clients).

– While the integration of the USART communication library libOpenCM3 for
STM32 boards was aimed at, it faced substantial hurdles. Despite genuine
attempts, integration couldn’t be achieved. However, the team has docu-
mented the entire process to facilitate future endeavors.

– The integration of the optimized CRYSTALS-Kyber-KEM from the pqm4
library was achieved.

– Performance benchmark frameworks have been implemented using our own
solution, allowing the measurement of both memory usage and speed of
any function call by instrumenting the code. Benchmarks have been made
for some system configurations. In summary, our evaluation highlights the
reduction in memory usage and execution time of the PAKEM implementa-
tions compared to the original ”modified Kyber-Ding-PACE.”

– Some goals, though ambitious, could not be achieved within the project’s
timeframe. Specifically, the integration of an existing PQC EAC imple-
mentation and the physical board implementation of SABER-KEM and
FrodoKEM.

4.2 Current State

At the culmination of this semester’s work:

– The PAKEM protocol has been robustly implemented in the virtual envi-
ronment and on the board. A demo can be found in the pakem-demo branch
of the GitLab repo.

– The optimized implementation of CRYSTALS-Kyber-KEM from the pqm4
library has been integrated and each security level runs on the board.

– Although PAKEM with Kyber has been implemented on the board, a per-
sistent issue has prevented its virtual execution, particularly due to library
encountered towards the semester’s end.

– The challenge with libOpenCM3, although unresolved, leaves behind a rich
documentation for further investigation.

22 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

– A flexible performance benchmarking system is in place, which enables future
optimizations.

– SABER-KEM and FrodoKEM are not running, neither virtually nor on hard-
ware. They used to work in the virtual environment, but after some updates
we made, they stopped working, and we ran out of time to figure out why.
However, with more effort, we believe they can be made functional again.
The integration on the board is enabled by our framework, but requires
implementations specifically for hardware.

4.3 Future Work

Extending Benchmarks. To provide a comprehensive understanding of mem-
ory usage and execution speed, it would be beneficial to measure and com-
pare different hardware and system configurations, such as using 256bit-
AES, 128bit-shake or the m4fstack implementation of pqm4-Kyber. Differ-
ent KEMs should also be benchmarked, once implemented on the board.
Extending the benchmarking to measure these configurations would provide
a more detailed overview of memory usage patterns and potential areas for
further optimization.

libOpenCM3 [lib] Library. The first step to addressing the issues we had
with integrating libOpenCM3 [lib] would be looking at how the framework
interacts with the STM32 HAL. Since we suspect there to be potential con-
flicts between the two, a further look into the USART communication and
interrupt handling could lead to the source of the matter. Other than that,
exploring and using more robust and better-equipped debugging tools would
aid this process, especially with suspected problems in the interrupt meth-
ods.

SABER [DKRV18] and Frodo [BCD+16]. With the infrastructure already
provided by means of the PAKEM core, running and benchmarking the
PAKEM protocol using SABER and Frodo for the Key Encapsulation pro-
cess would be the next step. The current official implementation of SABER
depends on the OpenSSL library, which was difficult to compile for our
STM32 board. Circumventing this obstacle could be achieved by finding
a better-suited implementation of SABER or adapting the currently used
implemtation to our needs. (Frodo...)

Initialization Vector for AES Encryption. AES encryption and decryption
requires an initialization vector. The previous implementation had realized
the Initialization Vector (IV) in a static, and hence not cryptographically
secure matter. Due to time constraints and by instruction of our supervisor
we left this part untouched, with the IV being ”hardcoded” on both server
and client side. Even though we have not made any changes in this regard,
the acknowledgement message we implemented to set the mode of operation
could be used to communicate the IV between client and server. In order to
be considered cyptographically secure, the IV must be randomly generated
and must be incremented after each encryption and decryption exchange.

B-PSE Project Report: Implementation of eID Protocols - SS23 23

Code Cleanup. Making the final transition from our virtual environment to
running PAKEM in an actual server-client setting took quite a few changes
to our code. Some fragments of these changes could still be cleaned up,
improving the readability of the infrastructure.

Adapt Code for real-world deployment. The current state of the imple-
mentation is still a proof of concept. In order to prepare the PAKEM imple-
mentation for a real-world deployment, the code infrastructure still has to be
expanded. Looking at what happens before and after the protocol execution
itself and adding these steps to the code would be the next big step towards
making the program more robust and ready to be used in practise.

24 T. Depuydt-Wiedemann, Y. El Hadj Ahmed et al.

References

BCD+16. Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Va-
leria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take
off the ring! practical, quantum-secure key exchange from lwe. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, page 1006–1018, New York, NY, USA, 2016.
Association for Computing Machinery.

BDK+18a. Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehle. Crys-
tals - kyber: A cca-secure module-lattice-based kem. In 2018 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P), pages 353–367,
2018.

BDK+18b. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber: a cca-secure module-lattice-based kem. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pages
353–367. IEEE, 2018.

cod22. code.fbi.h-da.de, 2022. https://code.fbi.h-da.de/aw/prj/athenepqc/

mpse-eid-implementation/-/wikis/Basic-Cryptography; abgerufen am
26.06.2023.

DKRV18. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. Saber: Module-lwr based key exchange, cpa-secure en-
cryption and cca-secure kem. In Progress in Cryptology – AFRICACRYPT
2018, 2018.

hte. hterm. https://gist.github.com/lalten/

070870c6a2db4a14ff3a1c1a18996c25.
LBB22. Chao Lu, Utsav Banerjee, and Kanad Basu. Design and analysis of a

scalable and efficient quantum circuit for lwe matrix arithmetic. In 2022
IEEE 40th International Conference on Computer Design (ICCD), pages
109–116, 2022.

lib. libopencm3. https://github.com/libopencm3/libopencm3.
NDGJ21. Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-

channel attack on a masked ind-cca secure saber kem implementation.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 676–707, 2021.

RK19. Kumar Sekhar Roy and Hemanta Kumar Kalita. A survey on post-
quantum cryptography for constrained devices. International Journal of
Applied Engineering Research, 14(11):2608–2615, 2019.

https://code.fbi.h-da.de/aw/prj/athenepqc/mpse-eid-implementation/-/wikis/Basic-Cryptography
https://code.fbi.h-da.de/aw/prj/athenepqc/mpse-eid-implementation/-/wikis/Basic-Cryptography
https://gist.github.com/lalten/070870c6a2db4a14ff3a1c1a18996c25
https://gist.github.com/lalten/070870c6a2db4a14ff3a1c1a18996c25
https://github.com/libopencm3/libopencm3

	B-PSE Project Report: Implementation of eID Protocols - SS23

