Natural Language Processing
>> Syntax <<
>> from transformation to unification <<

winter / fall 2015/2016
41.4268

Prof. Dr. Bettina Harriehausen-Mühlbauer
Univ. of Applied Sciences, Darmstadt, Germany
https://www.fbi.h-da.de/organisation/personen/harriehausen-muehlbauer-bettina.html

Bettina.Harriehausen@h-da.de
1. What is syntax?

2. Grammar theories and formalisms
   - Dependency Grammar
   - Transformational Grammar
   - Phrase Structure Grammar
   - Case Grammar
   - Unification Based Grammar
Syntax - introduction

What is Syntax?

Syntax deals with:

• the analysis of NLP input on sentence level
• the generation of NLP output on sentence level
• structural descriptions on sentence level, mostly
  • in form of PS-(phrase structure) trees and/or
  • unification-based formalisms
• structural rules on sentence level (this can vaguely be compared to how „grammar“ of a language is traditionally taught)
Syntax - introduction

Acronyms used in structural descriptions of natural language („vocabulary“) = the auxiliary dictionary for the node descriptions:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>sentence/clause</td>
</tr>
<tr>
<td>N</td>
<td>(a single) noun</td>
</tr>
<tr>
<td>NP</td>
<td>noun phrase</td>
</tr>
<tr>
<td>V</td>
<td>verb</td>
</tr>
<tr>
<td>VP</td>
<td>verb phrase</td>
</tr>
<tr>
<td>AUX</td>
<td>auxiliary verb</td>
</tr>
<tr>
<td>AJ/ADJ</td>
<td>adjective</td>
</tr>
<tr>
<td>ADJP</td>
<td>adjective phrase</td>
</tr>
<tr>
<td>ADV</td>
<td>adverb</td>
</tr>
<tr>
<td>ADVP</td>
<td>adverb phrase</td>
</tr>
<tr>
<td>DET</td>
<td>determiner</td>
</tr>
<tr>
<td>CONJ</td>
<td>conjunction</td>
</tr>
<tr>
<td>COMP</td>
<td>complementizer</td>
</tr>
<tr>
<td>PRO</td>
<td>pro-constituent</td>
</tr>
<tr>
<td>PUNC</td>
<td>punctuation</td>
</tr>
</tbody>
</table>
### Syntax - introduction

Examples for the node names:

<table>
<thead>
<tr>
<th>Node</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>sentence/clause</td>
<td>„Does the dog chase the cat?“</td>
</tr>
<tr>
<td>N</td>
<td>(a single) noun</td>
<td>„dog“</td>
</tr>
<tr>
<td>NP</td>
<td>noun phrase</td>
<td>„the old dog“</td>
</tr>
<tr>
<td>V</td>
<td>verb</td>
<td>„chase“</td>
</tr>
<tr>
<td>VP</td>
<td>verb phrase</td>
<td>„chase the cat“</td>
</tr>
<tr>
<td>AUX</td>
<td>auxiliary verb</td>
<td>„does“</td>
</tr>
<tr>
<td>AJ/ADJ</td>
<td>adjective</td>
<td>„old“</td>
</tr>
<tr>
<td>ADJP</td>
<td>adjective phrase</td>
<td>„old and gray“</td>
</tr>
<tr>
<td>ADV</td>
<td>adverb</td>
<td>„happily“</td>
</tr>
<tr>
<td>ADVP</td>
<td>adverb phrase</td>
<td>„once upon a time“</td>
</tr>
<tr>
<td>DET</td>
<td>determiner</td>
<td>„the“</td>
</tr>
</tbody>
</table>
Syntax - introduction

Examples for the node names:

CONJ = conjunction "and"
COMP = complementizer "what"
PRO = pro-constituent "he"
PUNC = punctuation "?"
1. **Dependency Grammar** (Tesnière 1953, 1959):
The finite verb is the focal point of the sentential analysis, i.e. the valency of the verb determines the structure of the sentence.

- e.g. transitive verbs: valency of 2:
  - Bob loves Mary.
  - ![Diagram of Bob loves Mary]

- intransitive verbs: valency of 1.
  - The cat sleeps.
  - ![Diagram of The cat sleeps]
Genealogy of grammar theories and formalisms (and their influence on AI)

2. Generative transformational grammar (TG) -> X-bar -> GB
   (Chomsky 1957, 1959)

   The attempt to construct a formal model of the language competence of an ideal speaker-hearer:

   „I understand a generative grammar to simply be a rule system, which assigns \textit{structural descriptions} to sentences in an explicit and well defined manner“ (Chomsky 1965)
Grammar theories and formalisms

Genealogy of grammar theories and formalisms (and their influence on AI)

1. Dependency Grammar
2. Transformational Grammar
3. Phrase Structure Grammar
4. Case Grammar
5. Unification Based Grammar

deep structure <-> surface structure

transformation rules

Noam Chomsky (* 1928)
- formalizing (natural) language
- generative grammar
The dog barks at the cat.

The cat is barked at by the dog.

**surface structure**

**active**

**passive**

**Transformations**

dog = actively barking animal

cat = passively barked at animal

bark at = action

**deep structure**

---

1. Dependency Grammar
2. Transformational Grammar
3. Phrase Structure Grammar
4. Case Grammar
5. Unification Based Grammar
Examples for transformations

Deletion: \( A + B \Rightarrow B \)

Example: He didn’t know *that* he should read the book.

He didn’t know ***he should read the book.***
Examples for transformations

Permutation: $X + Y + Z \implies X + Z + Y$

```
  A
  /|
 / 1
X Y Z =>
  /
  V
  X Z Y
```
Examples for transformations

Sample of a permutation rule:

NP + VP + ADV  =>  ADV + NP + VP

Det     N   V          NP

a    girl cut  a   flower  yesterday.  Yesterday a   girl cut  a   flower.
Examples for transformations

Substitution / Replacement: \( X + B \Rightarrow Y + B + X \)

Example: (in combination with permutation)

That it is raining is too bad.

It is too bad that it is raining.
Examples for transformations

**Adjunction:** \[ B \Rightarrow A + B \]

initial structure before adjunction

sister-adjoin A to the left of B
Examples for transformations

Adjunction: Example: *I don't know what he will do.*
Examples for transformations

**Adjunction:**

Example: *I don't know what he will do.*

Sister adjunction of wh-phrase to COMP
Grammar theories and formalisms

Binary rules

Top-down:

\[ S \rightarrow VP + PUNC \]
\[ VP \rightarrow NP + VP \]
\[ NP \rightarrow DET + NP \]
\[ NP \rightarrow ADJ + NP \]
\[ VP \rightarrow V + NP \]
...

Bottom-up:

\[ DET + NP \rightarrow NP \]
\[ ADJ + NP \rightarrow NP \]
\[ V + NP \rightarrow VP \]
\[ NP + VP \rightarrow VP \]
\[ VP + PUNC \rightarrow S \]
...

Parser

1. Dependency Grammar
2. Transformational Grammar
3. Phrase Structure Grammar
4. Case Grammar
5. Unification Based Grammar
Binary rules

The dog chases the cat.

Top-down:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Grammar</th>
<th>Parse Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>S -&gt; VP + PUNC</td>
<td>S -&gt; The dog chases the cat (VP) + . (PUNC)</td>
<td></td>
</tr>
<tr>
<td>VP -&gt; NP + VP</td>
<td>VP -&gt; the dog (NP) + chases the cat (VP)</td>
<td></td>
</tr>
<tr>
<td>NP -&gt; DET + NP</td>
<td>NP -&gt; the(DET) + dog (NP)</td>
<td></td>
</tr>
<tr>
<td>NP -&gt; N</td>
<td>NP -&gt; dog (N)</td>
<td></td>
</tr>
<tr>
<td>VP -&gt; VP + NP</td>
<td>VP -&gt; chases (VP) + the cat (NP)</td>
<td></td>
</tr>
<tr>
<td>VP -&gt; V</td>
<td>VP -&gt; chases (V)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>NP -&gt; the (DET) + cat (NP)</td>
<td>NP -&gt; the (DET) + cat (NP)</td>
<td></td>
</tr>
<tr>
<td>NP -&gt; cat (N)</td>
<td>NP -&gt; cat (N)</td>
<td></td>
</tr>
</tbody>
</table>
Grammar theories and formalisms

Binary rules

The dog chases the cat.

Bottom-up:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>DET + NP -&gt; NP</td>
<td>dog (N) -&gt; NP</td>
</tr>
<tr>
<td>N-&gt; NP</td>
<td>the (DET) + dog (NP) -&gt; NP</td>
</tr>
<tr>
<td>VP + NP -&gt; VP</td>
<td>chases (V)-&gt; VP</td>
</tr>
<tr>
<td>V-&gt;VP</td>
<td>cat (N)-&gt; NP</td>
</tr>
<tr>
<td>NP + VP -&gt; VP</td>
<td>the (DET) + cat (NP) -&gt; NP</td>
</tr>
<tr>
<td>VP + PUNC -&gt; S</td>
<td>chases (VP) + the cat (NP) -&gt; VP</td>
</tr>
<tr>
<td>...</td>
<td>the dog (NP) + chases the cat (VP) -&gt; VP</td>
</tr>
<tr>
<td>...</td>
<td>the dog chases the cat (VP) + .(PUNC) -&gt; S</td>
</tr>
</tbody>
</table>

1. Dependency Grammar
2. Transformational Grammar
3. Phrase Structure Grammar
4. Case Grammar
5. Unification Based Grammar
constituent structure / PS-tree:

A girl handed a baby a toy.

```
S -> NP + VP
NP -> Det + N
VP -> V + NP + NP
better: VP -> V + NP (recursive!)
```

Diagram:

- S (=VP)
  - NP
    - Det
    - N
  - VP
    - V
    - Det
    - N
    - NP
      - Det
      - N
- a girl handed a baby a toy
Grammar theories and formalisms

Why binary rules?

Claim: "the set of well-formed sentences in any language is infinite" (Chomsky)

Claim: "there is no (theoretical) upper limit on the length of sentences in any language" (though there are of course performance limitations)

Example 1: We can have indefinitely many attributive adjectives qualifying a noun in English:

John is a handsome man.
John is a dark, handsome man.
John is a tall, dark, handsome man.
John is a sensitive, tall, dark, handsome man.
John is an intelligent, sensitive, tall, dark, handsome man.
etc.
Why binary rules?

Example 2: There is in principle no upper limit to the number of quantifying expressions we can use to modify an adjective in English:

Debbie Harry is very attractive.
Debbie Harry is very, very attractive.
Debbie Harry is very, very, very attractive.
Debbie Harry is very, very, very, very attractive.
Debbie Harry is very, very, very, very, very attractive.
Debbie Harry is very, very, very, very, very, very attractive.
Debbie Harry is very, very, very, very, very, very, very attractive.

etc.
Why binary rules?

Example 3: There isn’t any limit on the number of times that we can use one clause as the complement of another in English:

John said that Mary was ill.
Fred said that John said that Mary was ill.
Harry said that Fred said that John said that Mary was ill.
etc.
Grammar theories and formalisms

Why binary rules?

Example 4: There is no limit on the number of phrases that we can conjoin together by *and* (or *or*) in English:

I met Debbie and Harry.
I met Debbie, Noam, and Harry.
I met Debbie, Noam, the dustman, and Harry.
I met Debbie, Noam, the dustman, the president, and Harry.
etc.
Grammar theories and formalisms

Why binary rules?

Example 5: There is no upper limit on the number of relative clauses a sentence can contain in English:

I chased the dog.
I chased the dog that chased the cat.
I chased the dog that chased the cat that chased the rat.
I chased the dog that chased the cat that chased the rat that chased the mouse.
etc.
Why binary rules?

In order to reach the goal of writing a set of finite rules to describe an infinite set of well-formed sentences, we need to think “binary” in order to be able to program rules efficiently – otherwise we would have an infinite set of rules (...and our task of writing a grammar would be an endless story...)

That is why „binary rules“!
Grammar theories and formalisms

References


3. **Phrase structure grammar** (PS-grammar)

   = a finite set of PS-rules

A PS-grammar consists of:

- an auxiliary dictionary (the node names)
- the final vocabulary (the lexicon)
- a start node (= S)
- a set of PS-rules
Genealogy of grammar theories and formalisms (and their influence on AI)

3. Phrase structure grammar

**context sensitive**

\[ X \rightarrow Y/w_z \]

- **VP**
  - **V_trans/_obj**
  - **V_intrans/_#**

**context free**

\[ X \rightarrow Y \]

- **S**
  - \( \rightarrow \) NP + VP
- **NP**
  - \( \rightarrow \) Det + NP
- **VP**
  - \( \rightarrow \) V_trans + NP
  - \( \rightarrow \) V_intrans
(a) PS-Rules

S \rightarrow \text{NP} + \text{VP}

\text{NP} \rightarrow \text{PRO}

\text{VP} \rightarrow \text{V} + (\text{S})

(b) Lexical Insertion Rules

\text{PRO} \rightarrow \text{I, she}

\text{V} \rightarrow \text{wonder, snores}

\text{COMP} \rightarrow \text{whether}

(c) I \rightarrow (\text{PRO, +1sg, +human, +animate, ...})

\text{she} \rightarrow (\text{PRO, +3sg, +human, +animate, ...})

\text{wonder} \rightarrow (\text{VERB, +1sg, -3sg, +wh-clause, +cognitive, ...})

\text{snores} \rightarrow (\text{VERB, +3sg, +intrans, +active, +animate, ...})

---------------------------------------------------------------

Lexicon: parts of speech, subcategorisation features (morpho-syntactic), selectional features (semantic)
Syntax

Grammar rules

Electronic dictionary